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Abstract
Byzantine Fault Tolerant (BFT) protocols provide powerful 
guarantees in the presence of arbitrary machine failures, yet 
they do not scale. The process of creating new, scalable BFT 
protocols requires expert analysis and is often error-prone. 
Recent work suggests that localized, rule-driven rewrites 
can be mechanically applied to scale existing (non-BFT) 
protocols, including Paxos. We modify these rewrites—
decoupling and partitioning—so they can be safely applied 
to BFT protocols, and apply these rewrites to the critical 
path of PBFT, improving its throughput by 5×. We prove the 
correctness of the modified rewrites on any BFT protocol by 
formally modeling the arbitrary logic of a Byzantine node. 
We define the Borgesian simulator, a theoretical node that 
simulates a Byzantine node through randomness, and show 
that in any BFT protocol, the messages that a Borgesian 
simulator can generate before and after optimization is the 
same. Our initial results point the way towards an automatic 
optimizer for BFT protocols.

1 Introduction
Dealing with arbitrary failures is inherently complex; 
dealing efficiently with arbitrary failures even more so. De-
signing correct, scalable BFT [9] protocols is thus extremely 
challenging, and even experts often make mistakes [2, 10]. 
While one cannot do much about the inherent complexity 
of BFT, recent work suggests an appealing middle ground. 
Instead of creating new, scalable protocols from scratch, 
one can break down existing (and usually simpler) protocols 
into components [7] that can be scaled individually [15].
Gupta et al. [8] manually pipelined and partitioned existing 

BFT protocols, achieving up to 6× throughput improvement. 
Chu et al. [5, 6] obtained similar results with simple, local, 
program rewrites for Paxos [14]: decoupling (splitting logic 
across nodes) and partitioning (splitting data across nodes), 
as seen in Figure 1. Their rewrites are promising because 
they are protocol-agnostic and rule-driven: given a protocol 
written in a distributed DSL [3], the rewrites can be used
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Figure 1. Decoupling (middle) and partitioning (right), split-

ting a node 𝑙 into two nodes 𝑙1 and 𝑙2. Byzantine nodes (evil

emoji) can insert messages on decoupled message channels

and duplicate messages across partitions.

to correctly modify any protocol. However, these rewrites

were proven correct assuming non-Byzantine failures only.

This paper modifies the rewrites introduced by Chu et al.

and proves the correctness of the resulting rewrites when

applied to BFT protocols.

To illustrate the challenge, consider the critical path

of PBFT [4], a fundamental BFT protocol that reaches

consensus across 3𝑓 +1 replicas. Replicas in PBFT receive

PrePrepare messages from a primary replica: these

messages contain, among other things, a command to

execute, its hash digest, and a signature from the primary

over the hash digest. The replica accepts the message if the

digest is indeed the hash of the command and the signature

is valid. In a later phase, once this replica receives 2𝑓 + 1
Commit messages (which also contain a digest) from other

replicas, it will compare the digest within the Commits

to the digest of the PrePrepare it received earlier; if the

digests match, then the replica will execute the command.

Because the replica monotonically accumulates sets of

PrePrepare and Commit messages through time, the

rewrites from Chu et al. suggest that replicas can be scaled

up via monotonic decoupling. For each node, the logic that

collects PrePrepare messages and the logic that collects

Commit messages can be decoupled into two nodes: a

pre-preparer and committer . Crucially, each pre-preparer

must forward PrePrepares to its own committer so it

can later compare digests and execute the command. The

remaining phases of PBFT can be similarly decoupled, as

we will discuss in detail in Section 6.

Intuitively, decoupling logic into two nodes reduces load

on any one machine and can improve throughput. However,

in the presence of Byzantine failures, this decoupling

would be unsafe. A single Byzantine node could send two

committers doctored PrePrepares with the same digest but

different commands. Committers, without checking whether
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the message was forwarded from their own pre-preparers,

would then execute the wrong commands, breaking the

consensus invariant. Because Chu et al.’s decoupling rewrite

was not designed to handle Byzantine attacks, the messages

between decoupled nodes are neither signed nor verified,

allowing Byzantine nodes to insert their own messages as

seen in Figure 1.

To prevent the attack above, we will modify decoupling

with sender verification (Section 4.1), which signs and verifies

each message sent between decoupled nodes. We will also

modify partitioning with message verification (Section 4.2),

such that each partition individually verifies that it is

receiving the correct subset of hash-partitioned messages.

Given an input protocol that is BFT, our proof strategy

is two-fold: we show that (1) to nodes untouched by the

rewrites, Byzantine nodes in the rewritten protocol cannot

generate any more messages than they could have generated

before, and (2) for modified nodes, all invariants required by

the rewrites are reinforced against Byzantine attacks. With

these guarantees, any Byzantine attacks on the untouched

nodes in the rewritten protocol would be identical to a Byzan-

tine attack in original protocol (which is already BFT), and

any Byzantine attacks on the modified nodes are ineffective.

In order to discuss what messages a Byzantine node can

produce, we must formally model all possible Byzantine

behavior as part of our proof framework. This is tricky:

Byzantine behavior is, by definition, arbitrary. To this effect,

we make the following observations: (1) a Byzantine node’s

behavior is a function of its outputs, and (2) the set of

all possible Byzantine behaviors is exactly the set of all

random behaviors. We introduce the Borgesian simulator1,
a theoretical gadget that simulates all possible Byzantine

behavior in a protocol-agnostic way through randomness.

At any point in time, the Borgesian simulator can generate

arbitrarily many random messages to all input channels.

This theoretical gadget allows us to compare Byzantine

behaviors and prove the correctness of the modified rewrites.

Our initial results are promising. The modified rewrites are

simple to check, yet applying them scales the throughput

of PBFT by 5× when applied to its critical path.

2 Background
BFT. BFT protocols can tolerate up to 𝑓 node failures, where

failed nodes can exhibit Byzantine behavior. Byzantine

nodes can send arbitrary messages and share private keys.

They cannot, however, break standard cryptographic primi-

tives [4]. We assume a shared-nothing architecture in which

nodes can only communicate through messages. Messages

between correct nodes will eventually be delivered.

1
Jorge Luis Borges’ story The Library of Babel posits a library of books

composed of every possible ordering of characters. By definition, this library

contains all books, though it may take arbitrary time to find good ones.

Rule-driven rewrites. Chu et al. presents a set of rule-

driven rewrites that can be applied to arbitrary distributed

protocols implemented in Dedalus [3], a declarative dataflow

language for distributed systems based on Datalog. Due to

limited space, we will instead discuss these rewrites in the

context of event-driven pseudocode instead.

Rewrites improve protocol throughput by decoupling and

partitioning [15] (Figure 1). Decoupling splits logic on a

single node 𝑙 into two nodes 𝑙1 and 𝑙2. Partitioning splits data
on a single node 𝑙 into multiple new nodes 𝑙 = {𝑙1,𝑙2,...}. Both
rewrites alleviate single-node bottlenecks by introducing

pipeline- and data- parallelism, respectively [5]. We say that

these new nodes 𝑙1,𝑙2,... correspond to 𝑙 .

Used naively, decoupling and partitioning can make a

protocol that was previously fault tolerant vulnerable to

Byzantine attacks. The rewrites can (1) create new nodes

and introduce message channels between them, in order to

enable pipelining or coordination, and (2) modify existing

message channels so messages to a single node must be

forwarded to its correct corresponding nodes. New message

channels present exploitable opportunities to Byzantine

nodes, which can send arbitrary messages to those channels.

2.1 Running example and syntax
We will use Algorithm 1 as a case study in our rewrites.

This snippet of PBFT [4] collects Prepare messages, waits

for a quorum, then broadcasts a Commit message, repre-

senting a common pattern that can be found in many other

BFT protocols. Prepare messages arrive on the prepareIn
channel and Commit messages are sent on the commitOut
channel. We will use the syntax commitOut@dest f 𝑚

to indicate sending a message𝑚 to node dest on channel

commitOut. The address of each node is stored in the variable
self, and the addresses of all nodes is stored in allNodes.

Each prepare message has the following fields: view 𝑣 ,

slot number 𝑛, digest 𝑑 of a command, sender index 𝑖 , and

signature 𝜎 . Each Prepare message is first filtered based on

its signature and view (Line 4), then added to the log (Line 5).

Once 2𝑓 + 1 Prepare messages have been received for a

particular slot number and digest (Line 7), a Commitmessage

is signed and broadcasted to all other nodes (Lines 9 and 10).

Nodes have access to the cryptographic functions sign(sk,
m) and verify(pk, 𝜎, m). sign(sk, m) returns the

signature 𝜎 for a secret key 𝑠𝑘 and message𝑚. verify(pk,
𝜎, m) returns true if 𝜎 is the signature of the secret key 𝑠𝑘

corresponding to the public key 𝑝𝑘 over𝑚; it returns false

otherwise. Keys are available to each node through the maps

skeys and pkeys; for each node at location 𝑙 , skeys[𝑙 ′] and
pkeys[𝑙 ′] returns the secret and public keys used to sign

and verify messages from 𝑙 to 𝑙 ′, respectively.

We treat the signature schemes commonly used by BFT

protocols—MACs (Message Authentication Codes) [11] and
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public-key signatures [13]—as black boxes and do not distin-

guish between them in our formalism. Both produce a signa-

ture that can be verified with the correct key; this key is sym-

metric for MACs and asymmetric for public-key signatures.

In our formalism, we will store all keys, symmetric or

asymmetric, in skeys and pkeys, and sign and verify them

with the same syntax. Any symmetric key 𝑘 used between

nodes 𝑙 and 𝑙 ′ is only available to those two nodes: 𝑘 =

skeys[𝑙 ′] = pkeys[𝑙 ′] on 𝑙 , and 𝑘 = skeys[𝑙] = pkeys[𝑙]
on 𝑙 ′. The availability of asymmetric keys is asymmetric.

A node 𝑙 signs all its outgoing messages with 𝑠𝑘 , which is

known to no other node, but all nodes know its public key 𝑝𝑘 :

for any 𝑙 ′, 𝑠𝑘 = skeys[𝑙 ′] on 𝑙 , and on any 𝑙 ′, 𝑝𝑘 = pkeys[𝑙].

Algorithm 1: The running example from PBFT.

1 prepareLog = {}

2 numPrepares[][] = {}

3 for msg ∈ prepareIn(v, n, d, i, 𝜎) do
4 if verify(pkeys[i], 𝜎 , <v, n, d>) and v = view then
5 prepareLog.add(msg)

6 numPrepares[n][d] += 1

7 if numPrepares[n][d] ≥ 2𝑓 +1 then
8 for dest ∈ allNodes do
9 𝜎 ′← sign(skeys[dest], <v, n, d, self>)

10 commitOut@destf (v, n, d, self, 𝜎 ′)

2.2 Correctness
This paper is focused on proving the correctness of rewrites
across BFT protocols, not the correctness of any specific BFT

protocol. Assuming that the original distributed protocol is

correct in the presence of 𝑓 Byzantine failures, the modified

rewrites will decouple and partition the protocol while

preserving correctness up to 𝑓 Byzantine failures.

We discuss failures in the rewritten protocol in terms of

fault domains. Each node 𝑙 in the original protocol belongs to

its own fault domain; when 𝑙 is scaled up into its correspond-

ing nodes 𝑙 , all nodes in 𝑙 remain in the same fault domain.

Therefore, the failure of any node in 𝑙 is equivalent to the

failures of all nodes in 𝑙 , which is equivalent to the failure 𝑙 ,

and the rewrites do not change the number of fault domains.

Intuitively, to any observer, the output of all nodes 𝑙

together represents the output of the corresponding original

node 𝑙 . A “partially” Byzantine node is still Byzantine: if any

single node 𝑙𝑖 ∈ 𝑙 becomes Byzantine while the remaining

corresponding nodes are still correct, it is as if the original

node 𝑙 becomes Byzantine but continues to send some
correct messages.

Correctness is defined by observable program behavior.

A rewrite is correct if given any program 𝑃 , a rewritten

program 𝑃 ′, and any set of inputs (and their respective

send times), 𝑃 ′ always generates the same outputs with the

same timestamps as some possible run of 𝑃 with up to 𝑓

Byzantine failures [5].

3 Borgesian simulators
To prove the correctness of rewrites in a Byzantine setting,

we must first formally model a Byzantine node in a

protocol-agnostic way.

This is tricky; a Byzantine node can execute arbitrary

logic. Fortunately, other nodes only observe the output of

the node, not the logic by which it generated a particular

message. Two Byzantine nodes that generate the same

outputs are indistinguishable, even if one executes complex

logic and the other creates messages at random. It follows

that a Byzantine node can be modeled solely by its outputs.

Byzantine behavior can thus be fully captured by a random
message generator : if, at each point in time, a node sends a

random number of random messages to each channel, then

that node must contain, in its set of possible runs, exactly all
possible runs of any Byzantine node. We name this random

message generator theBorgesian simulator. This simulator

can generate both nonsensical and seemingly intelligent out-

puts, all of which must be correctly handled by a BFT proto-

col. We will formalize the Borgesian simulator by attaching a

Borgesian harness to all nodes in a BFT protocol. Note that

this harness defines what a protocol must defend against and

is not meant to be applied in practice or used as a fuzz tester.

3.1 Plaintext message channels
In the simplest case, given a plaintext message channel on

any node, a node simulating Byzantine behavior should be

able to send an arbitrary number of messages to that channel.

Algorithm 2 is our running example with this harness

applied: it executes the original logic if it is not Byzantine,

and sends a random number of random messages to

commitOut at each moment in time if it is. In our pseu-

docode, isByzantine is a mapping from nodes to booleans

that returns true for up to 𝑓 nodes, and randInt() and

rand() provide random values.

Algorithm 2: The running example with the plain-

text Borgesian harness.

1 if !isByzantine[self] then
// Original logic

2 else
3 for 𝑡 ∈ (0,∞), dest ∈ allNodes do
4 for 𝑖 ∈ (0, randInt()) do
5 commitOut@destf (rand(), rand(), rand(),

rand(), rand())

This harness can be systematically applied to any node

in any protocol by iterating over all message channels on

Line 3, replacing commitOut with each channel on Line 5,

and populating message fields with random values.
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Algorithm 3: The running example with the signed

message channel Borgesian harness.

1 if !isByzantine[self] then
// Original logic

2 else
3 for 𝑡 ∈ (0,∞), dest ∈ allNodes, byz ∈ allNodes where

isByzantine[byz] do
4 for 𝑖 ∈ (0, randInt()) do
5 <v, n, d, s>← (rand(), rand(), rand(), rand())

6 𝜎← sign(allSkeys[byz][dest], <v, n, d, s>)

7 commitOut@destf (v, n, d, s, 𝜎)

Observe that a Byzantine node with the Borgesian harness

can also behave like a non-Byzantine node; the set of all

possible runs includes runs in which Byzantine nodes do

not deviate from the protocol.

3.2 Signed message channels
Our Borgesian harness up to this point is flawed: by using

rand() to populate the “signature” field in Algorithm 2

Line 5, the Borgesian simulator is allowed to break cryptog-

raphy, mimicking the signatures of keys it does not have

access to. To model practical assumptions, we would like

to forbid the Borgesian simulator from randomly emitting

messages that break cryptography. To this end, we separate

message fields into three types: (1) unprotected fields, (2)

protected fields, and (3) signatures created by signing over

the protected fields. A Borgesian simulator should only

generate signatures by signing the protected fields with

either its own keys or the keys of other Byzantine nodes,

simulating collusion.

Algorithm 3 is our running example, with the new

Borgesian harness that generates the signature of messages

on commitOut using the keys available to it. Note that

all fields of commitOut are protected. In the psuedocode,

allSkeys is a mapping from nodes to their skeys array,

which allows a Byzantine node to access the keys of all other

Byzantine nodes. In general, the Borgesian harness must

differentiate between plaintext and signed message channels:

on signed channels, it must generate a valid signature by

using the keys it has to sign the messages’ protected fields.

The Borgesian simulator does not need to generate mes-

sages with incorrect signatures in our formalism, because

we assume that all correct nodes verify the messages they

receive on signed channels, so any incorrectly signed

messages will be discarded.

3.3 Forwarding
Although Byzantine nodes can only sign new messages us-

ing their keys, they can still forward along messages signed

by other nodes as long as they do not alter the protected

fields. We will modify the Borgesian harness such that it

takes previously received messages into consideration.

Algorithm 4 is our running example, with the new Bor-

gesian harness which in addition to signing messages with

its own key, can store received messages in commitStore
and output them randomly.

Algorithm 4: The running example with the for-

warding Borgesian harness.

1 if !isByzantine[self] then
// Original logic

2 else
3 for msg ∈ commitIn(v, n, d, s, 𝜎) do
4 commitStore.add(msg)

5 for 𝑡 ∈ (0,∞), dest ∈ allNodes do
6 for byz ∈ allNodes where isByzantine[byz] do
7 for 𝑖 ∈ (0, randInt()) do
8 <v, n, d, s>← (rand(), rand(), rand(), rand())

9 𝜎← sign(allSkeys[byz][dest], <v, n, d, s>)

10 commitOut@destf (v, n, d, s, 𝜎)

11 for msg ∈ commitStore do
12 for 𝑖 ∈ (0, randInt()) do
13 commitOut@destf msg

3.4 Nested types
For more complex data types (such as View-Change

from PBFT, which contains arrays of sets of messages) the

Borgesian harness should populate fields with a combination

of the approaches described above. It should populate

each data structure with a random number of elements,

generating random data for each unprotected field and

either signing or reusing signatures for protected fields.

Now the Borgesian harness is complete; any node for which

isByzantine is true becomes the Borgesian simulator,

whose possible behaviors are exactly the set of possible

behaviors of a Byzantine node.

4 Modifications to rewrites
We now present two modifications to the rewrites intro-

duced by Chu et al.: sender verification (Section 4.1) and

message verification (Section 4.2).

4.1 Sender verification
The rewrites introduce new channels, with implicit as-

sumptions about which nodes will send on those channels.
2

Without additional verification, these channels would be

vulnerable to Byzantine attacks from other nodes.

Modification: Sender verification. Replace each new

channel chan(m) from node 𝑙1 to 𝑙2 with signed_chan(m,
𝜎), where 𝜎 = sign(skeys[𝑙2], m). The receiving node 𝑙2

2
Rewrites that fall into this category include monotonic decoupling, func-

tional decoupling, asymmetric decoupling, and partial partitioning [5, 6].
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only processes a message𝑚 if verify(pkeys[𝑙1], 𝜎, m)
returns true.

As an optimization, if functional dependencies [1, 5] are

known, then the sender does not have to sign all fields of the

message. If there is a functional dependency from message

field 𝑥 to 𝑦—that is, there is some deterministic function 𝑓

where 𝑓 (𝑥) = 𝑦—then signing over 𝑥 is sufficient. If there

is a one-to-one dependency between the fields—there exists

some 𝑓 −1 (𝑦)=𝑥—then signing over either field is sufficient.

This optimization applies to any BFT protocol that uses

collision-resistant hash functions (such as PBFT), where

there is a one-to-one dependency between the hash digest

and the original message. In that case, only the digest has

to be signed. PBFT itself makes the same observation and

only signs the digest on its preexisting channels. Note that

the inverse of the hash function does not need to be known;

this optimization is valid as long as such a function exists.

4.2 Message verification
The partitioning rewrites also introduce channels with

implicit assumptions on message content. Nodes created

through partitioning all share the same types of input chan-

nels, but each partition assumes that it will receive a specific

disjoint subset of the messages.
3
Byzantine nodes can exploit

this assumption and send messages to the wrong nodes.

Modification: Message verification. For each input

channel chan(m) on partition 𝑙𝑖 , replace all instances

of chan(m) with correct_chan(m), which drops any

messages from chan(m) that are not meant for this partition.

This criteria can be checked with the distribution policy

function 𝐷 (𝑚) as defined in [5], which maps each message

to its intended partition.

5 Proof of correctness
We now prove the correctness of the modified rewrites in the

presence of Byzantine failures. The rewrites are correct if the

number of Byzantine fault domains remains unchanged (as

discussed in Section 2.2), and all input channels on correct

nodes can correctly handle messages from Byzantine nodes.

Without loss of generality, we will prove this holds over

a specific correct node 𝑑𝑒𝑠𝑡𝑐 that receives messages from

a specific Borgesian simulator sender, 𝑠𝑖𝑚𝑏 in the original

protocol and 𝑠𝑖𝑚′
𝑏
in the rewritten protocol.

We will break down the input channels of 𝑑𝑒𝑠𝑡𝑐 into

four types—unmodified, redirected, duplicated, and new

channels—and prove that each type can correctly handle

messages from 𝑠𝑖𝑚′
𝑏
after the rewrites. Unmodified channels

are unchanged between the original and rewritten protocols.

Redirected channels existed on some node 𝑙 in the original

protocol and exist on one of its corresponding nodes in

the rewritten protocol. Duplicated channels existed on 𝑙

3
All subcategories of partitioning in [5]—partitioning with co-hashing, parti-

tioning with dependencies, and partial partitioning—share this assumption.

in the original protocol and on multiple corresponding 𝑙 in

the rewritten protocol. New channels are introduced by the

rewrites between between 𝑙1 and 𝑙2 nodes that correspond

to the same original node. All input channels in a rewritten

protocol can be categorized into one of the four types above.

Unmodified channels. These channels existed on 𝑑𝑒𝑠𝑡𝑐 in
the original protocol and remain on 𝑑𝑒𝑠𝑡𝑐 after the rewrites.

Because we assumed that the original protocol is already

BFT, any messages sent by 𝑠𝑖𝑚𝑏 must already be correctly

handled. We will show that 𝑠𝑖𝑚′
𝑏
in the rewritten protocol

cannot generate additional messages by reasoning with the

Borgesian simulator.

Because the channel is unmodified, by construction, the

output logic of the 𝑠𝑖𝑚′
𝑏
to that channel must also be

unchanged from 𝑠𝑖𝑚𝑏 . However, we might still be concerned

that the state at 𝑠𝑖𝑚′
𝑏
could change after the rewrites, by

receiving more signed messages from some other correct

node 𝑛𝑐 . Then 𝑠𝑖𝑚′
𝑏
would then be able to forward along

more signed messages than 𝑠𝑖𝑚𝑏 (Section 3.3). We will show

that this concern is unjustified: 𝑠𝑖𝑚′
𝑏
cannot receive more

messages than 𝑠𝑖𝑚𝑏 , so it cannot send more either.

To assess this, we need to examine the input channels

to 𝑠𝑖𝑚′
𝑏
through which these messages arrived. If these

messages were sent by another Byzantine node, then they

could have been generated by 𝑠𝑖𝑚′
𝑏
as well; therefore, we

will only analyze situations where the sender 𝑛𝑐 is correct.

Unmodified input channels: by definition of “unmodified”,

any 𝑛𝑐 that sends a message to an unmodified channel in

𝑠𝑖𝑚′
𝑏
would have sent the same message to 𝑠𝑖𝑚𝑏 , so the

state is unchanged. Redirected or duplicated input channels:
the rewrites guarantee that a 𝑛𝑐 will only send messages

to a node 𝑠𝑖𝑚′
𝑏
if, in the original protocol, it sent the same

messages to the corresponding node 𝑠𝑖𝑚𝑏 . Again, the state is

unchanged. New input channels: the rewrites only introduce

new channels between nodes corresponding to the same

original node. Therefore, nodes connected by new channels

must be in the same fault domain. Any node that can send

a message on a new channel to a Byzantine node 𝑠𝑖𝑚′
𝑏
must

therefore also be Byzantine, breaking our assumption that

the sender 𝑛𝑐 is correct.

Because the Borgesian simulator in the rewritten protocol

cannot receive newmessages from correct nodes on any of its

input channels, it cannot produce any new messages either.

Redirected channels. A redirected channel is essentially

an unmodified channel where senders redirect all messages

from an original node 𝑙 to a specific corresponding node 𝑙𝑖 .

The proof is similar; any message sent to 𝑙𝑖 after rewrites

could have been sent to 𝑙 before rewrites.

Duplicated channels. Partitioning duplicates a channel
on 𝑙 across its corresponding partitions 𝑙 = {𝑙1,𝑙2, ...}. Each
channel expects to get a disjoint subset of messages,

depending on the distribution policy [5]. This new invariant
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request sequencing pre-prepare prepare commit reply

𝑟1

𝑟2

𝑟3

𝑟4

leader proxy leader pre-preparer preparer committer

Figure 2.The critical path of ScalablePBFT, with themessage

path through 𝑟2 bolded. 𝑟1 is the primary.

is enforced by message verification (Section 4.2); the channel

is otherwise unmodified and the proof is similar.

New channels. These channels have no counterpart in the

original protocol, so we must show that they can correctly

handle all Byzantine messages. As stated above, new chan-

nels are only introduced between nodes in the same fault

domain. Since 𝑑𝑒𝑠𝑡𝑐 is correct, all nodes in its fault domain

must be correct. Sender verification (Section 4.1) filters mes-

sages from nodes outside the fault domain; therefore, 𝑑𝑒𝑠𝑡𝑐
will not process any Byzantine messages on a new channel.

We have demonstrated that all input channels on a correct

node 𝑑𝑒𝑠𝑡𝑐 after rewriting are safe against Byzantine attacks,

proving that the rewrites correctly preserve fault tolerance.

6 Initial results
We evaluate the efficacy of our rule-driven rewrites by

manually applying them to scale the critical path of

PBFT [4]. Our experimental scripts and setup can be found

at https://github.com/rithvikp/autocomp.

Our evaluation mirrors the evaluation from Chu et al.

PBFT is implemented in Dedalus [3] and compiled to

Hydroflow [12], a Rust dataflow runtime for distributed

systems. We deploy on GCP using n2-standard-4 machines

with 4 vCPUs, 16 GB RAM, and 10 Gbps network bandwidth.

Throughput and latency are measured over one minute

runs after 30 seconds of warmup. Clients send 16 byte

unbatched commands in a closed loop. The state machines,

clients, and protocol nodes are all run on separate machines.

Performance is measured with an increasing set of clients
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Figure 3. Throughput/latency comparison of PBFT before

and after rewrites.

until throughput saturates, averaging across 3 runs with

standard deviations in shaded regions.

We will refer to the unoptimized implementation of

PBFT as BasePBFT and the rewritten implementation as

ScalablePBFT. Both implementations only include the

critical path and assume that there is no view-change and

no checkpoints. Our deployments tolerate 𝑓 = 1 failures.

Figure 3 compares the resulting throughput-latency graph

from both implementations.

BasePBFT. The base deployment contains 3𝑓 + 1 = 4

nodes. Clients send messages to a pre-elected primary,

which sequences the command and broadcasts PrePrepares

(including both the command and its signed digest). Replicas

that receive PrePrepares broadcast Prepare (now only

including the command’s digest). Replicas that receive 2𝑓 +1
Prepares broadcast a Commit. Replicas that receive 2𝑓 +1
Commits find their matching PrePrepare from earlier and

send the command and its sequence number to its state

machine, which executes the command and notifies the

client. The client waits for 𝑓 +1 state machine results before

sending the next message. BasePBFT achieves a maximum

throughput of 11,000 commands/s.

ScalablePBFT.We created ScalablePBFT throughmutually
independent decoupling, functional decoupling, monotonic
decoupling, and partitioning with co-hashing. Each replica

is decoupled into five components: the leader, proxy leader,

pre-preparer, preparer, and committer. Each component,

aside from the leader, is hash-partitioned on the commands’

sequence number.

Figure 2 illustrates the roles of the individual components;

partitioning is implicit. The leader listens to the client and

sends a PrePrepare to proxy leaders. Proxy leaders broad-

cast PrePrepares to pre-preparers. Pre-preparers broadcasts

a Prepare to preparers upon receiving PrePrepare and

also sends a PrePrepare to its corresponding committer.

Preparers broadcast a Commit to committers upon receiving

2𝑓 + 1 Prepares. Committers send the command and

sequence number to its state machine after receiving 2𝑓 +1
Commits and the corresponding PrePrepare.

We evaluate ScalablePBFT on 1, 3, and 5 partition configu-

rations, where each partitionable component is partitioned 𝑛

ways. The 3-partition configuration of ScalablePBFT—with

4 leaders, 12 proxy leaders (only 1 leader and its 3 proxy

leaders are active), 12 pre-preparers, 12 preparers, and 12
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committers—achieves a maximum throughput of 55,000 com-

mands/s, a 5× improvement. The additional latency overhead

from scaling is negligible. In our experiments, scaling beyond

5 partitions did not significantly improve throughput.

In order to validate our results, we aim to evaluate these

rewrites on the entirety of PBFT and on more BFT protocols.

The attentive reader might notice that decoupling PBFT

becomes complex when logic outside the critical path is

considered; a view-change, for example, must update all

decoupled components. To this end, we will introduce partial
decoupling, which adds a round of coordination on the off

chance that values “shared” between components are up-

dated, much like partial partitioning [5]. This rewrite is not

yet in the literature and will be formalized in future work.
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