
Keep CALM and CRDT On
Shadaj Laddad∗

University of California, Berkeley
shadaj@cs.berkeley.edu

Conor Power∗
University of California, Berkeley
conorpower@cs.berkeley.edu

Mae Milano
University of California, Berkeley

mpmilano@cs.berkeley.edu

Alvin Cheung
University of California, Berkeley

akcheung@cs.berkeley.edu

Natacha Crooks
University of California, Berkeley

ncrooks@cs.berkeley.edu

Joseph M. Hellerstein
University of California, Berkeley

hellerstein@cs.berkeley.edu

ABSTRACT
Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented API.
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
a larger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

1 INTRODUCTION
Consistency is a central theme of distributed computing research,
with major implications for practitioners. Modern cloud-hosted
applications are frequently distributed to optimize for latency and
availability. When application state is replicated across the globe,
developers often face stark choices regarding replica consistency.
Strong consistency can be enforced in a general-purpose way at
the storage or memory layer via classical distributed coordination
(consensus, transactions, etc.), but this is often unattractive for la-
tency and availability reasons. Alternatively, application developers
can build on “weakly” consistent storage models that do not use
coordination; in this case developers must reason about consistency
at the application level.

The last decade has seen a surge of research interest in rea-
soning about application consistency, featuring everything from
complex formal invariants [54] to multi-tiered consistency annota-
tions [19, 40] to explicit happens-before annotations on operations
[12]. In recent years, one approach has risen above the noise among
practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
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GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTs, as originally phrased by
Shapiro et al, leverage “a well defined interface ... [with] mathe-
matically sound rules to guarantee state convergence” [52]. This
guarantee is achieved via the ACI properties of the merge function.
Classic anomalies in eventually consistent systems are caused by
reordered, duplicated, or late-arriving updates—none of which can
affect the result of an idempotent, commutative, and associative
function execution.

But this strong convergence guarantee addresses only state up-
dates and offers no APIs (or guarantees!) for visibility into the state
of a CRDT. Although useful queries are often included in the pre-
sentation of CRDT designs, these have no impact on the correctness
of the CRDT and are no safer to use than arbitrary queries executed
directly on the underlying state. In one of the precursor papers
to CRDTs that also proposes ACI merge functions, Helland and
Campbell go as far as noting ironically that READs are “annoying”
and may not commute with other actions [15].

Example 1 (The Potato and the Ferrari, a.k.a. Early Read).
A canonical CRDT is the Two-Phase Set (2P-Set) [51], which is a pair
of sets (𝐴, 𝑅) that track items to be added (𝐴) and removed (𝑅). The
merge function for two 2P-Sets is defined simply as the pairwise union,
(𝐴1 ∪𝐴2, 𝑅1 ∪ 𝑅2) and is patently ACI. This scheme was used in the
well-known Amazon Dynamo shopping cart example [11].

Implicit in this design is a query𝑄 = 𝐴−𝑅 returning the intended
contents of the set. Consider a scenario where a shopper adds a potato
and a Ferrari to their cart, then removes the Ferrari, and “checks out”
by computing the query 𝑄 . In one or more replicas of the 2P-Set, the
checkout request could arrive before the removal of the sports car. This
truly expensive consistency bug arises when the query “reads” the
state of the 2P-Set “too early”, before all the removals have eventually
arrived. And there is no way to know that all the removals have indeed
arrived without the coordination that CRDTs supposedly do not need.

In practice, the soundness of state convergence in CRDTs does
not translate to predictable guarantees for computations that exam-
ine them. Onemight say that CRDTs provide Schrödinger consistency
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guarantees: they are guaranteed to be consistent only if they are
not viewed.

The weak consistency of CRDT queries is not a secret in the
research literature [63, 64], and is mentioned in the initial pa-
pers [51, 52]. At the same time, bloggers and other developer-facing
venues have latched onto the formal language of the initial pa-
pers (“principled” [52], “mathematically sound” [52], “theoretically
sound” [51]), and sometimes without caveats. For example, one
online article argues that CRDTs “allow multiple replicas in differ-
ent regions to mathematically resolve to the same state without
coordination ... multiple active copies present accurate views of
the shared datasets at low latencies” [20]. This dangerous misread
of CRDT guarantees suggests that more work is needed to ensure
developers use CRDTs safely.

We believe that the gaps in CRDT guarantees can be addressed on
two fronts: (a) defining more precisely what developers must reason
about when using CRDTs in their applications and (b) building
data systems for CRDTs that automatically manage replication
and query execution to deliver stronger consistency guarantees.
The unconstrained nature of queries in CRDTs raises an intriguing
question: can we develop a more formal query model that makes
it possible to precisely define when execution on a single replica
yields consistent results?

In this paper, we explore how the CALM (Consistency As Logical
Monotonicity) theorem [3], originally formulated as a definition
for consistency in distributed logic programs, can be used as the
basis of a query model for CRDTs that delineates queries that can
be executed locally from those that require coordination among a
quorum. Because monotonicity can be identified as a static prop-
erty, this view of queries paves the path for a CRDT data system
that provides efficient and safe execution of queries. Guided by this
vision, we map out a research path that weaves together query op-
timization, storage abstractions, provenance, and more to bring the
coordination-free benefits of CRDTs to developers while preserving
the consistency guarantees they expect.

2 AN OVERVIEW OF CRDTS
Most discussions of CRDTs begin by introducing two functionally
equivalent representations: state-based CRDTs (a.k.a. CvRDTs) and
op-based CRDTs (a.k.a. CmRDTs). Essentially, state-based CRDTs
gossip data, while op-based CRDTs gossip logical log records.

2.1 State-Based CRDTs
We begin by reviewing the definition of state-based CRDTs. CvRDTs
encapsulate the current 𝑠𝑡𝑎𝑡𝑒 of the replica; let the type of 𝑠𝑡𝑎𝑡𝑒 be
called 𝑇 . The API for state-based CRDTs contains three classes of
methods, all of which run locally on a single replica’s state:
Merge: merge is a single, required method that takes a value 𝑣 of
type 𝑇 as input. It combines 𝑠𝑡𝑎𝑡𝑒 with 𝑣 to generate a value 𝑠𝑡𝑎𝑡𝑒 ′
of type 𝑇 , and updates itself so that 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒 ′. Constraint: the
merge function must be ACI.

Operations: these are methods that clients use to modify 𝑠𝑡𝑎𝑡𝑒 .
Constraint: operations must be monotonic with respect to the type 𝑇 .

Queries: these are methods that do not modify 𝑠𝑡𝑎𝑡𝑒 , but return a
result that may be dependent on 𝑠𝑡𝑎𝑡𝑒 .

merge(adds, removes) {

state.adds = union(state.adds, adds);

state.removes = union(state.removes, removes);

}

operation add(i) { state.adds = union(state.adds, Set(i)); }

operation remove(i) { state.removes = union(state.removes, Set(i)); }

query contents() { return diff(state.adds, state.removes); }

Figure 1: Pseudocode for a Two-Phase Set CRDT.

Figure 2: Hasse diagrams for G-Set and a cardinality counter,
and a monotone function between them (dashed lines).

An example of a 2P-Set CvRDT is shown in Figure 1. In CvRDTs,
nodes gossip their replicas to each other and apply merge upon
receipt of gossip. If we focus only on 𝑠𝑡𝑎𝑡𝑒 and merge, a CvRDT
is simply a new name for a classical mathematical construct: the
join semi-lattice. A join semi-lattice is defined in precisely the same
way: it is a pair 𝑆 = (𝐷,⊔) where 𝐷 is a domain (i.e. type) and ⊔ is
an operation (called “join” or “least upper bound”) that is ACI.

A well-known property of a join semi-lattice 𝑆 is that it is iso-
morphic to a partial order ≤𝑆 on 𝐷 such that given two elements
𝑠, 𝑡 ∈ 𝐷 , 𝑠 ≤𝑆 𝑡 iff 𝑠 ⊔ 𝑡 = 𝑡 . (We will drop the subscript on ≤ when
it is clear from context.) The familiar “Hasse diagrams” for semi-
lattices capture this by laying out the elements of 𝐷 on a y-axis
corresponding to the ≤ ordering (Figure 2). Note that this order is
partial: two elements 𝑠, 𝑡 ∈ 𝐷 may be incomparable: 𝑠 ̸≤ 𝑡 ∧ 𝑡 ̸≤ 𝑠 .

Operations are monotonic with respect to the partial order ≤:
if an operation replaces 𝑠𝑡𝑎𝑡𝑒 with 𝑠𝑡𝑎𝑡𝑒 ′, we require that 𝑠𝑡𝑎𝑡𝑒 ≤
𝑠𝑡𝑎𝑡𝑒 ′. A good way to enforce this is to forbid operations from
modifying 𝑠𝑡𝑎𝑡𝑒 directly, and instead require them to invoke merge
to perform the state update—the ACI properties of merge then
ensure monotonic updates. Viewed through that lens, CvRDTs only
update their state through the ACI merge function, and are precisely
join semi-lattices [30].

Note that although queries are included in the API surface of
CvRDTs, they are unconstrained and may perform arbitrary com-
putations on the underlying state. Therefore, the choice of queries
included with a CRDT design have no effect on the safety of obser-
vations through them—their consistency guarantees are no stronger
than a single query that just emits the internal state of the CRDT.

2.2 Op-Based CRDTs and Compression
The idea of op-based CRDTs (CmRDTs) is to gossip logs of opera-
tions rather than state. Each given replica 𝑟 applies its operations
sequentially, so upon gossip we require that another replica 𝑟 ′ ap-
plies the log records from 𝑟 in an order that produces the same
final state as 𝑟 . In typical deployments of op-based CRDTs, this
restriction is imposed by requiring the network between replicas to
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guarantee causal delivery. As a result, the logs accumulated at every
replica follow the standard happens-before partial order defined by
Lamport [32].

But as noted above, a partial order like happens-before is iso-
morphic to a join semi-lattice! That means that we can capture the
CmRDT log as a CvRDT. One simple way to do this is to hold the
DAG corresponding to the partial order: this is simply a “grow-only”
set—whose only operation is add—which holds edges of a DAG.
Each directed edge connects two operations, and indicates that the
operations happened in the order of the edge. (Another solution
would be to use CvRDTs for vector clocks.) A natural query over
such a CvRDT is to “play the log”: i.e. produce a topological sort of
the log and apply the operations in the resulting order.

CmRDTs can therefore be considered a gossip compression tech-
nique that maps instances of one CvRDT (say a 2P-Set as in Figure 1)
to another CvRDT (a partially ordered log of add and remove oper-
ations). Hence CmRDTs are arguably a specific form of a CvRDT for
partially-ordered logs, with various tricks applied to suit the nature
of the operations being logged. In the remainder of our discussion,
we focus on the clean lattice-based CvRDT API, and use the CRDT
acronym to mean CvRDTs.

2.3 A Snapshot of CRDTs in Practice
This model of CRDTs has gained traction in the industry across a
wide range of applications ranging from high-scale backend logic
to client-side collaborative state. Before we dive into our vision
for extensions to CRDTs that make them safer to use, let us briefly
explore the ways they are already being applied.

CRDT designs in use today largely fall into two buckets: the
core CRDTs from the early literature designed to mimic classic data
structures [51] and more advanced CRDTs focused on replicating
documents for collaborative editing [60, 61]. Across a variety of
languages, developers have created several libraries [25, 42] that pro-
vide high-quality implementations of the core CRDTs. These CRDTs
have also become adopted as building blocks that can be used by
distributed systems developers through systems like Akka [48],
Dynamo [11], and Redis [7], which all provide CRDTs as built-in
data structures. There are also well documented examples of indus-
try players building systems on top of CRDTs, such as PayPal [38]
and League of Legends [18]. We even see examples of CRDTs used
inside of databases such as in FlightTracker [53] at Facebook, which
uses CRDTs to provide stronger consistency guarantees in the TAO
data store.

A significant portion of recent CRDT research has focused on
collaborative editors, which have latency and fault-tolerance chal-
lenges that CRDTs are well-suited to address. The research in this
space is primarily interested in representing the variety of ways
that users interact with text documents, such as text insertion, cut/-
paste to different locations, and formatting layers. A lot of recent
creativity in the CRDT space has gone into this domain, resulting
in designs such as Peritext [35].

3 TOWARD A QUERY MODEL FOR CRDTS
In Section 1 we argued that CRDTs have gained interest for their
combination of safety, efficiency, and simplicity. In that spirit, our
desiderata for a good CRDT query model are:

Safety: Queries should be sequentially consistent, regardless of the
replica at which they are evaluated.
Efficiency: Queries should be evaluated locally without coordina-
tion whenever possible.
Simplicity: The query model should be easy for developers to
reason about.

3.1 Example Queries
Let’s look at some examples of queries that can and cannot be exe-
cuted without coordination while satisfying sequential consistency.

Example 2 (A Boolean ThresholdQuery Over a Grow-Only
Set). One of the simplest possible CRDTs is the Grow-Only Set (G-
Set) [51]. It is a set 𝑆 with an operation that can add elements to 𝑆
and a merge function that is the set union, 𝑆1 ∪ 𝑆2.

Say we want to determine whether the number of gift card pur-
chases that are over $100 in a set of transactions has exceeded 50 items
(similar to the threshold functions in LVars [29]):

query suspicious_activity() {

if (cardinality([

txn for txn in state

if txn.type == "GIFTCARD" and txn.amount > 100

]) > 50):

return true else ABORT;

}

Note that the suspicious_activity query returns either true
or aborts (signifying “unknown”). Perhaps surprisingly, executing
this query on a local replica will always produce a sequentially
consistent result, even without coordination! This is because each
replica of a CRDT effectively represents an under-approximation of
some true global state; that is, each individual replica has seen some
subset of the updates which have entered the system at any given
time. Thus, the true “global” state of the system can be derived
from any individual replica’s local state by adding in some number
of missing update operations. This query’s true result cannot be
changed by any subsequent updates; thus, for the purposes of this
query, our replica’s local state reflects the same information as a
true “global” state would contain, and can serialize after that global
state. If the query aborts, we learn nothing; aborted queries are not
considered when determining sequential consistency.

Let’s return to our Potato/Ferrari example from the introduction.
In this example, the query we wanted to ask, 𝑄 = 𝐴 − 𝑅, would
not yield a consistent result when executed locally. We again are
guaranteed that eventually the local state will converge to the global
state and give us the correct answer to the query, by the eventually
consistent properties of CRDT operations. However, unless we can
ensure that our local state is equal to the global state via coordination,
we cannot determine that the result of our local query matches
the result of the global query. We could be missing the effect of an
operation locally (e.g., remove(‘Ferrari’)) and we would output
an incorrect result.

Consider a third query, again over the 2P-Set. This time we want
to rate-limit a shopping cart user by detecting whether the number
of actions they have taken exceeds 100. Our query is 𝑄 = |𝐴| +
|𝑅 | > 100. This query can computed locally without coordination
by the same reasoning as suspicious_activity: since 𝐴 and 𝑅
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individually are guaranteed to increase in size, we know that the
𝑔𝑙𝑜𝑏𝑎𝑙 ( |𝐴| + |𝑅 |) ≥ 𝑙𝑜𝑐𝑎𝑙 ( |𝐴| + |𝑅 |).

3.2 What’s Going on Here? ... Monotonicity!
What is going on here? Some queries are consistent without co-
ordination, but others require a global view of the system to be
correct? The difference between these queries is that the thresh-
old queries are monotone queries with respect to the CRDT state
and its partial order, whereas the shopping cart checkout query
is non-monotone. This distinction may be familiar to the reader
from the CALM Theorem [3, 16], which proved that programs are
convergent without coordination iff they are monotone.

The CALM Theorem is framed in terms of monotonicity over
logic on relations—but it applies equally well to the CRDT domain!
Per Section 2, we know that both the merge and update methods of
a CRDT monotonically increase the value of the CRDT’s state with
respect to its partial order. We can define a monotone query as any
whose output is monotone with respect to ordering of the CRDT.
That is, given a join semi-lattice 𝑆 = (𝐷,⊔) as the state of the CRDT,
a query 𝑄 is monotone if ∀𝑖, 𝑗 ∈ 𝐷 : 𝑖 ≤ 𝑗, 𝑄 (𝑖) =⇒ 𝑄 ( 𝑗). By
the CALM Theorem, monotone queries over CRDTs are exactly the
queries that only need a local view of the system to be correct!

Monotone queries meet all the criteria we outlined for a good
query model. They are able to achieve safety and efficiency for
queries over CRDTs. The CALM Theorem tells us that not only do
they meet these criteria (if), but they are the only queries that meet
this criteria (only if). Further, monotone queries offer composition
through monotone functions. As previously observed (Bloom𝐿 [8],
Lasp [39], Datafun [4]) this compositionality allows construction of
complex systems out of CRDT primitives, and is highly amenable
to programming language tools. The space of monotone queries
is quite large; for example, four of the five operators of relational
algebra are monotone: selection, projection, union, and intersection.
Only set difference is non-monotone. Observe that a pipeline com-
posing monotone functions will always give a monotone function
end-to-end, but if the pipeline contains any non-monotone function
then the end-to-end-computation will be non-monotone.

Perhaps the most important property, since it focuses on the
adoption barriers for CRDTs, is the simplicity of our query model.
We believe that query monotonicity should be understandable to
anyone who understands basic CRDTs. The state in standard CRDT
examples is either sets or counters, both of which have simple, intu-
itive definitions of monotonicity. Moreover, the definition of CRDTs
requires developers to understand monotonicity with respect to
state updates, so it should be reasonable for developers to extend
this reasoning to include queries as well. Because monotonicity
can be syntactically identified in many existing query languages,
including SQL, we are optimistic that developer tools can help guide
the creation of monotonic queries.

3.3 Beyond Monotonicity
Monotonic queries are the natural query model for CRDTs; their
resilience to update re-ordering mirrors the convergent nature
of updates within a CRDT. We acknowledge, however, that there
are large classes of queries performed on CRDTs which are not
monotonic. A simple example of a non-monotonic query is set

difference (𝑄 = 𝐴−𝑅), seen in our shopping cart. In non-monotonic
queries, missing global information can make results appear to go
backwards over time, making it impossible to safely make decisions
based on the results of these queries.

So what are developers to do when they need one of these non-
monotone queries? The simple and safe solution is to coordinate!
Queries executed against global state, after all, will always be cor-
rect. The choice of coordination falls into a classic spectrum for
distributed databases outlined by Bernstein and Goodman [5]: write-
one read-all, write-majority read-majority, or write-all read-one.
Each of these strategies, however, is still improved by the use of
CRDTs: with CRDTs, only non-monotone queries need to be or-
dered, with respect to sets of updates. As update operations com-
mute, there is no need to coordinate in order to sequence update
operations with each other.

Developers building on CRDTs retain the option to perform a
local, but stale query on a single replica. The resulting application-
level considerations align well with those established by high-scale
systems developed in industry, such as Google’s Zanzibar authoriza-
tion system [45], which offers APIs for retrieving safe, up-to-date
results or recent, but potentially stale ones. For applications that
can tolerate out-of-date results, with a staleness distribution deter-
mined by the gossip protocol, local non-monotone queries offer a
fast path that can reduce the overall latency perceived by the user.

4 ENABLING FAST AND SAFE CRDT SYSTEMS
Equipped with our distinction of monotone queries, we believe that
developers will be able to apply CRDTs in new ways by developing
complex applications on top of replicated state. By reducing query
correctness to a simple property, monotonicity, developers can
reason about the correctness of their data architectures and know
the pitfalls to avoid when creating CRDT-backed systems. As more
developers write software that depends on CRDTs in complex ways,
it is critical that the research community explores methods that
help developers utilize CDRTs robustly and efficiently. To this end,
we propose a shift in perspective from an object-oriented view
of CRDTs to a “database” view of them: breaking CRDTs up into
a query model and a data store that separates their logical and
physical representations. This shift in perspective brings us to
many impactful research problems in data management for CRDTs.

4.1 A Query Language For CRDTs
In Section 3, we outlined a formal query model for CRDTs that uses
monotonicity as a key property to determine how the query should
be executed to guarantee consistent results. Our next challenge is
to identify how this model can be mapped to a practical language
that developers can use to declare the observations they want to
make on CRDTs.

What we need in a query language is a set of rich expressions
that can manipulate the lattice structures used inside CRDTs, and a
syntax that makes it easy for developers (and computers) to iden-
tify when a query is monotone and can be efficiently executed.
One promising choice is to develop a dialect of the query language
most developers are already familiar with: SQL! Recent theoreti-
cal work [22] demonstrated an extension of relational queries to
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operate over semi-rings. We are currently working on a similar
formalization for extending relational algebra to semi-lattices.

There are two major benefits of using the SQL language for
queries over CRDTs. First, it is clear syntactically in SQL queries
whether the query is monotone or not, which will help developers
design efficient programs and reason about them. Second, we al-
ready know how to build optimizers for SQL that take advantage
of monotonicity! Streaming joins and barrier stages are examples
of an optimizer leveraging its knowledge of monotonicity and non-
monotonicity respectively in the dataflow graph.

Using relational-style languages to query CRDTs also fits well
into recent research exploring alternate models of CRDTs. In par-
ticular, there has been a recent push to define CRDTs as Datalog
queries over sets of operations being gossiped across nodes [23]. In
such a model, issuing queries in a relational-style language natu-
rally fits into the execution model, and opens up the opportunity for
further end-to-end optimizations such as using incremental view
maintenance to identify efficient ways to propagate the effects of
operations to queries.

By defining a query language that allows developers to safely
view the state of a CRDT, we arrive at an interaction model that
is distinct from the object-oriented, in-memory CRDTs used to-
day. Our model of CRDTs includes application-specific operations,
which are fundamental to proving convergence of the CRDT, but
the lack of predefined queries deviates significantly from the classic
object-oriented model. Our CRDTs can be viewed as effectively
having one open-ended endpoint that all queries go through.

4.2 A Data Management System for CRDTs
Separating the capabilities of CRDTs from the object-oriented inter-
face they are typically wrapped in raises an intriguing opportunity:
operations and our query language can become an interface be-
tween application logic and an independent CRDT data store that
manages all aspects of the CRDT life-cycle. We believe that this
approach can both increase the ease of use of CRDTs, by shifting
the responsibility of reasoning about consistency to the store, and
improve the efficiency of applications built on CRDTs, since data
stores can make advanced optimization decisions based on the dy-
namic workload. Compared to existing data stores that support
CRDTs but do not provide query APIs [7, 9], our monotonic query
model enables rich observations of CRDTs with strong consistency
guarantees.

In our vision, a CRDT data store sits in the application stack at a
similar level as a traditional relation database or key-value store.
Application services can interact with the CRDT store over the
network, using a protocol that can be easily implemented by several
languages so that heterogeneous application implementations can
interact on shared CRDT state. By deploying the CRDT store as a
separate networked service, our approach also enables serverless
applications to build on top of replicated state [55], since the replicas
will be maintained separately from the ephemeral execution nodes.

Shifting CRDTs from being baked into application logic to be-
ing managed by an external service does raise a challenge in the
extensibility with respect to the available data types. While to-
day’s CRDTs are defined as regular data types in the application
language and are immediately usable, bringing custom types to

a CRDT data store requires a pluggable interface to provide the
data store with an implementation of the CRDT. We believe that
this can be achieved with a lightweight extension API, similar to
Postgres extensions [56], that uses a foreign-function interface to
inject custom CRDTs. Because we only rely on the core CRDT prop-
erties of monotonic state and convergent operations, the system
can immediately make the CRDT available as long as the developer
certifies it satisfies these properties.

4.3 Optimization Opportunities in CRDT
Stores

The abstraction of placing CRDTs in a store separate from the appli-
cation reveals a range of opportunities for research that optimizes
how the CRDTs are stored and queried. Having applied our first
major database trick, a query model, the next natural one to apply
is the separation of logical and physical data representations. By
separating these for the CRDT data model, we open up many re-
search directions for optimizing the physical layer of CRDTs in the
DBMS. An increasingly popular research topic for CRDTs is how to
minimize their memory footprint [47]. Recent work applied colum-
nar compression techniques from databases to collaborative editor
CRDTs [24]. The more general question of how to automatically
find compressed representations of CRDTs is open.

The other approach to minimizing the memory footprint that is
ripe for automated management is garbage collection: when can
you delete or compact older operations in the CRDT? In today’s
applications, where CRDTs are freely passed around as regular
objects, it can be difficult to trace down all replicas. But when
all CRDT state is managed by the data store, garbage collection
can be safely employed because it is clear where replicas of each
CRDT lie. Garbage collection requires advanced program analyses
to determine when components of CRDT state become inaccessible.
We are especially excited about the opportunity to apply program
synthesis and automated verification research to discover strategies
for garbage collection.

Finally, there are several enticing research topics focused on
how the effects of operations are propagated between replicas. The
classic algorithm for gossip with state-based CRDTs calls for the
entire state of each replica to be sent over the network. For large
CRDT instances, this places a significant networking burden that
can increase staleness. But with bookkeeping that captures which
versions of the state have already been gossiped, we can instead
propagate smaller deltas that capture the effects of new operations.
There are several intriguing research directions in this space, such
as identifying compact data structures for the bookkeeping, the
selection of what delta information to gossip, how to batch those
deltas, and what gossip architecture and frequency to use.

4.4 Tradeoffs for Non-Monotone Queries
Although monotone queries make the most of CRDTs by entirely
eliminating coordination, not all business logic can be expressed
strictly in terms of such queries. Consistently executing non-monotone
queries requires the CRDT data store to introduce coordination
among replicas. However, not all hope for low-latency queries is
lost!
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As discussed in Section 3.3, datastores would only need to co-
ordinate in anticipation of a non-monotone query. With accurate
metrics and a model to predict both the frequency of these queries
and the data such queries will touch, future datastores can per-
form much of the work of reaching consistency in advance of this
non-monotone query, shifting into and out of a synchronize-on-
update model accordingly (as previously observed in [33, 34]). We
further note, however, that the metrics themselves are likely to be
monotone—and thus the work of determining when to coordinate
is itself amenable to our monotone query model, and can therefore
avoid synchronization.

4.4.1 Weakening consistency for non-monotonicity. Some applica-
tions may prefer to avoid coordination entirely, despite the fact that
coordination in the presence of non-monotonic queries is essential
for maintaining consistency. These applications have essentially
decided that weak consistency is tolerable for their purposes. Much
previous work exists in the space of weakly-consistent datastores,
both in terms of how to best supply usable weak consistency to
the user [1, 9, 31, 37, 62] and how to help the user decide when
weakening consistency may be appropriate [14, 41, 54].

Our framework of monotonic queries over CRDTs can enhance
these existing approaches. Most obviously, it can recognize patterns
of weakly-consistent reads which form monotonic queries, and can
thus allow such patterns without sacrificing consistency. More
subtly, building CRDTs into a database enables the use of lineage
techniques that have been well-studied in existing database systems.
In particular, a CRDT-and-monotonicity-aware dataflow technique
would be capable of determining the potential downstream effects
of a weakly-consistent query, providing database users and admin-
istrators alike with valuable insights into the consistency of not
just their data, but the observations derived from that data.

This information has particular use when applied to the apolo-
gies strategy first proposed by Helland and Campbell in [15]. With
apologies, potentially-inconsistent observations are accompanied
by compensating actions, which are intended to clean up any nega-
tive effects of weak consistency. By leveraging lineage tracing, a
CRDT-enabled database could automatically determine when such
apologies are necessary, prompting the application accordingly. In-
deed, this strategy is already present in PL-focused solutions such
as [41].

5 RELATEDWORK
CRDTs are well-studied in the research community; seminal ci-
tations mentioned earlier include [51, 52], as well as many pa-
pers on collaborative-text CRDTs [35, 49, 60, 61]. We choose to
focus on CRDTs due to their rising popularity; this framing drives
our choice to explore queries over CRDTs, and in turn excludes
lines of work which focus on safely directly observing weakly-
consistent shared memory such as [12, 54, 58]. In particular, solu-
tions which rely on causal [37], linearizable [17], or other explicit
consistency models stronger than eventual consistency (such as
[9, 19, 28, 34, 40, 46, 59, 64]), were set aside in our discussion.

These papers attempt to reduce the number of anomalies that
may emerge from weakly-consistent applications by eliminating
certain reorderings on some operations; in contrast, we seek a
simple unifying principle by which a developer can consider a

CRDT observation to be reliable, without reasoning about varying
classes of inconsistency under which it may be read. Some work,
such as [28, 33], uses CRDT-like reasoning to automate the choice
of consistency model; we believe that these papers fit with our goal
of discovering classes of monotonic observations safe to perform
with weak consistency, and we seek to extend them here.

While we focus on how developers use CRDTs, there is a wide
range of research on how these data types are designed. Recent work
has explored how CRDT designs can be generated using program
synthesis techniques [30], which significantly reduces the burden of
designing new types for custom application logic. In addition, a few
replicated data types have been proposed as alternatives to CRDTs,
such as ECROs [10] and MRDTs [21], with the focus of making it
easier for developers to express the semantics of the merge logic.
Like traditional CRDTs, however, these are also focused on con-
vergent updates to the data type, and leave queries unconstrained.
Other work, such as [64], introduce total order to certain CRDT
operations in order to allow consistent observations; in contrast,
we attempt to identify a class of monotonic observations which do
not require total order. Similarly, other work solves the consistent
read problem in ways reminiscent of escrow transactions [44] or
single-master replication [36, 50].

Perhaps the most related work comes from the programming
languages and databases space, with languages such as Gallifrey,
LVars, Lasp, Datafun, and Bloom𝐿 all providing capabilities for
constraining monotonic logic [4, 8, 29, 39, 41]. In Section 4, we
discuss a SQL-like query language with a database optimizer and
intelligent storage layer. Almost all of the research directions we
outline in that setting also apply to the compiler, runtime, and
storage layer for monotonicity-aware DSLs like these.

We believe that lighter-weight solutions than rewriting applica-
tions in a new DSL or query language will also play an important
role in safe adoption of CRDTs. One promising such solution is
type annotations in existing languages along the lines of Blazes [2].
In a DSL designed for CRDT queries, similar type systems could
be used to enforce monotonicity while supporting complex query
logic. Other angles from the programming languages and software
engineering communities include formal verification and fuzzing,
which can assist developers designing CRDTs by automatically
checking the core correctness properties.

6 CONCLUSION
CRDTs are simple, and beginning to see adoption among develop-
ers—an important signal for database researchers. CRDTs on their
own lack power. However, the research literature abounds with
results—such as the CALM theorem—which when combined with
CRDTs open new frontiers to researchers and developers alike. The
next generation of challenges in this space will arise at the seams
between foundational research and practical concerns. These chal-
lenges will require research spanning data management, distributed
systems, query models, and programming languages.
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